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ABSTRACT 
 
Photogrammetric measurement systems can be used to simultaneously obtain 3-D co-ordinates of targeted points. However, 
obtaining 3-D co-ordinates of spatial points is not usually the final objective. The measured 3-D data may be used for many other 
purposes, such as determining the position and orientation (six degrees of freedom) of an object with respect to a specified co-
ordinate system or the relative position and orientation of two or more objects. In either case CAD descriptions and tolerance 
information are generally available. This paper will discuss how the 3-D data can be matched with object CAD descriptions to 
determine object locations and how the errors are propagated from measurement source to the estimated results. The optimum design 
of a measurement system to meet a defined tolerance budget will also be discussed.  
 
1. Introduction 
 
As future manufacturing becomes more automated a higher 
reliance on measurement systems as a process enabling 
technology is becoming clear. In the aerospace area large scale 
metrology systems are often required. One of the few 
techniques available to measure the relative orientation of 
multiple components is photogrammetry.  
 
A generic requirement in manufacturing is the placement of 
components into desired locations prior to fixing. If 
photogrammetry is to be used it is necessary to relate CAD 
information for each component to the location of targets on the 
object. It is then possible to determine the location of the 
components with respect to any desired location. While targets 
are important, they are merely means to an end. This paper 
discusses a method of computing the location of the objects 
without the usual intermediate step of computing the 3-D points 
and then relating these to the CAD information. 
 
To illustrate this process, consider the assembly process 
illustrated in figure 1. A component (a leading edge rib) is 
observed by two or more cameras together with a spar. Targets 
in known positions with respect to the spar and the rib allow 
provide enough information to compute the relative orientation 
of the two components. This information, together with a 
knowledge of the relationship between the measurement system 
and the robot enable the robot to be controlled to move the rib 
into its desired location ready for drilling or fixing operations.   

 
Figure 1. A possible advanced manufacturing process – the 

assembly of the leading edge of a airplane wing 

2. Definition of terms 
 
An object that is moved from one location to another can be 
described by six degrees of freedom parameters (3 translations 
xt, yt, zt and 3 rotations α, β, γ) with respect to a given co-
ordinate system XYZ as shown in figure 2. The task is to 
determine the six transformation parameters. 

(xt, yt, zt, α, β, γ)

 
Figure 2. A simple object transformation example 

 
In a three-dimensional homogeneous co-ordinate representation, 
the translation of a point from position t  to 
position can be expressed as  
where  is a vector of translation distances for the 
co-ordinate direction X, Y and Z. A three-dimensional rotation 
of a point can be specified around a line in space. The most 
convenient rotation axes to deal with are the three co-ordinate 
axes. Conventionally positive rotation directions about the co-
ordinate axes are counter-clockwise (Hearn & Baker, 1994), 
when looking towards the origin from a positive co-ordinate 
position on each axis. The 3-D rotation transformation can be 
expressed as 
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in which R is 3 by 3 orthogonal rotation matrix related to the 
three rotational angles α, β and γ. The six degrees of freedom 
(DOF) are defined as a translation followed by a rotation, 
therefore the transformation equation can be written as 
 

TPRP +⋅= 12
   



The six DOF transformation is illustrated in figure 3. 
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Figure 3. The definition of the six degrees of freedom 

parameters 
 
With a photogrammetric measurement system the location of 
the targets on the object can be determined in a cartesian co-
ordinate system. These targets could be special features such as 
centre of holes, corner, or more typically retro-reflective targets 
specifically applied for photogrammetric purposes.   
 
2. The two step method 
 
The normal procedure of estimating the six DOF parameters 
would be (1) determine the 3-D co-ordinates of the targets on 
the object before and after transformation, (2) compute the six 
transformation parameters using on the two sets of co-ordinates. 
 
The 3-D co-ordinates of the target on the object can be obtained 
by a photogrammetric bundle adjustment or direct intersection. 
The 2 sets of co-ordinates before and after the movement must 
relate to the same co-ordinate system.  
 
Suppose that n corresponding targets on the object have be 
located in 3-D with respect to the co-ordinate system XYZ, and 
they will be used to determined the six transformation 
parameters. The co-ordinate transformation functional model 
for a single point can be expressed by equation 1 as 
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where 
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denote the 3-D co-ordinates of target i on the object before and 
after transformation, respectively. This is a six parameter rigid 
transformation without scale change. Each corresponding target 
will give rise to three equations. With a minimum number of 
three targets the six transformation parameters can determined 
by a least squares estimation. Linearizing the functional model 
(2) and considering, for the sake of generality, both and 

as observations yeilds: 
iP1
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where  is a column vector of six 
transformation parameters and tl  is a 
column vector of 2 sets of co-ordinates before and after 
transformation and 
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i and Bi are Jacobi matrices, i.e., 
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in which are the partial derivatives of R with respect 

to the three rotation angles α, β, γ respectively. With n 
corresponding targets on the object before and after 
transformation, the linearized functional model becomes 

γβα RRR ,,
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where 
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t , ,  and 

] . According to Mikhail & Gracie (1981) the six 
transformation parameters are estimated by 
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and the cofactor matrix of the estimated parameters is 
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where Ql is a cofactor matrix of the 6n observed co-ordinates 
(3n co-ordinates before the transformation and 3n after). This is 
a general case of least squares estimation which requires 
sophisticated computations that may not be suitable for real-
time applications. There are several different levels of 
simplifications. For instance, the two sets of co-ordinates can be 
treated as independent observations, i.e., there is no correlation 
between them, therefore the cofactor matrix Ql becomes a block 
diagonal matrix. It can also be assumed that there is no 
correlation between co-ordinates in each set and they are all 
equally weighted, so the cofactor matrix Ql will simply be a 
scalar. It can even be assumed that 1P  is a vector of constants, 
while  is a vector of observations. In this case equation (1) 
becomes a set of typical observation equations therefore can be 
solved easily. The simplest case would be to assume that both 

1  and P  are constants. So the least squares process can be 
simplified considerably. The estimated values of the six 
transformation parameters may not be influenced very much 
due to these assumptions if it is a strong convergent network 
with a large number of redundancies (Cooper, 1999). But the 
cofactor matrix of the estimates will surely be effected 
significantly. In many industrial applications it is important to 
estimate the values accurately and it is equally important to 
know the statistics of the estimates for quality controls. 
Therefore the full solution of the six DOF is required in terms of 
the value and the statistics. 
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3. An alternative method 
 



Instead of solving 3-D co-ordinates and the six transformation 
parameters in two steps, an alternative method is to combine the 
photogrammetric measurements with transformation constraints 
and solve for the six transformation parameters directly. To 
achieve this objective the relationship between image 
observations and the transformation parameters need to be 
established. The functional model which links the 3-D co-
ordinate and the image observations is based on the collinearity 
condition and can be written as 
 

lSPf =),(  
 
where P denotes the 3-D co-ordinates, S denotes the camera 
parameters and l denotes the image observations. In real-time 
on-line photogrammetric measurement applications the camera 
interior parameters are normally calibrated and the image 
observations are corrected accordingly. So S denotes only the 
camera exterior parameters. The equations for solving the 3-D 
co-ordinates before and after the transformation, considering the 
relationship between P1 and P2 given by equation ???, can be 
written as 
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In the above equations the transformation parameters R and T 
can be solved directly. Since both equations take the typical 
form of observation equations, the transformation parameters 
can be computed easily by least squares and the cofactor matrix 
of the estimated parameters is directly linked with image 
observations l1 and l2. It is important to recall that the 3-D co-
ordinates at the two positions (before and after the 
transformation) must be respected to the same co-ordinate 
system and the estimated transformation parameters will be 
related to this co-ordinate system.  
 
A typical way of defining a co-ordinate system is to use control 
points. Suppose that some control points have been measured 
accurately and the co-ordinate system XYZ is defined by these 
control points. These control points can then be used as 
constraints in the least squares estimation process (Cooper, 
1987). In this way the 3-D co-ordinates will be tied to the same 
co-ordinate system XYZ.   
 
For an on-line application it is a common practice to determine 
camera exterior parameters by a bundle adjustment using a 
reference target array and then compute the 3-D co-ordinates by 
iterative intersection based on the collinearity equations. Under 
this condition the camera exterior parameters in equation (a) 
and (b) will be constants. The unknown parameters left to be 
solved in equation (a) and (b) are P1 (the 3-D co-ordinates 
before the transformation) and (R, T) (the six transformation 
parameters). 
 
In an industrial environment the components for assembly are 
normally CAD-based object, i.e., the 3-D data are ready to be 
used for the assembly tasks. Therefore retro-reflective targets 
may be attached to the object at the known locations or be 
measured. For instance targets can be put on adapters fitting 
into holes or corners on the CAD-based object. Figure 4 
illustrates the CAD information relating to a leading edge 
component. 
 

 
Figure 4. CAD information relating to a leading edge wing 

component 
 
The 3-D co-ordinate of these targets in the initial position can 
be expressed by 
 

[ ]tZYXP 0000 =        
 
From the initial position to position k the six transformation 
parameters can be determined from equation (b), i.e., 
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The functional models take the form 
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In above equations (xk, yk) are image observations of the targets 
on the object in position k. M1, M2 and M3 are the first, second 
and third rows of the rotation matrix M witch is determined by 
the three rotational angles (ω, φ, κ) of the cameras. H is a 
column vector with three elements (XL, YL, ZL) witch defines 
the position of the camera perspective centres and cf is the focal 
length (or more accurately the principal distance) of the 
cameras. The six transformation parameters can be solved 
directly from equation ?. Since it is a typical observation 
equation the least squares estimation will take its simplest form 
and the covariance matrix of the estimates can be obtained 
easily. Therefore it is convenient to assess the capabilities of the 
measurement network under various conditions by simulation 
and practical tests. Some simulation test results are given later 
in this paper.  
 
4. An example of single camera solution 
 
It is possible to determine the six DOF of an object using a 
single camera provided that the 3-D data of the targets on the 
object are given. This is similar as space resection where the 
camera exterior parameters can be solved using spatial control 
points. If it is assumed that the camera is situated at the origin of 
the object co-ordinate system and the x,y axes of the image 
plane are aligned with the X,Y axes of the object co-ordinate 
system, the relationship between image observations (x, y) and 
the 3-D co-ordinates of the object point (X, Y, Z) can simply be 
expressed as    
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Considering that the initial positions (X0, Y0, Z0) of the targets 
on the object are known and the current positions are related to 
the six transformation parameters, equation ? can be extended as  
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With a minimum of three targets the six transformation 
parameters can be solved directly by the least squares 
estimation. The full covariance matrix of the estimates can be 
obtained easily.   
 
5. Simulation tests 
 
The simulation tests were conducted with a four camera 
network. A CAD object was generated with nine targets at 
known positions. The initial positions of the targets are listed in 
Table 1 and network configuration is illustrated in figure 5. 

Table 1. CAD information relating to target  
locations on object 
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Figure 5. Camera to object relationship 

 
The CAD object was first set to a known position with three 
translations and three rotations (true value). The image co-
ordinates on cameras were computed for the targets on the 
object. Random errors were added to the image co-ordinates. 

The six transformation parameters were then calculated based 
on the image observations and the known 3-D co-ordinates of 
the targets on the object. The standard deviations of the 
estimated parameters were also produced. Figure 6 shows an 
example of the simulation tests (translations are in millimetres 
and rotations are in degrees). 
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Figure 6. Simulation trial results 
 
To test the measurement capabilities of the six DOF of the CAD 
object, various changes were made on the measurement system 
in terms of 2-D subpixel accuracy, convergent angles of the 
network and the depth of the CAD object. The accuracy of the 
six DOF were analysed with respect to these factors. The 
primary test was based on measurement network with the object 
to camera distance as 1500 mm and the convergent angle as 90 
degrees. The 2-D subpixel accuracy was σ0 = 0.4 µm. The 
simulation test results are listed in tables 2, 3 and 4.     

σ0(µm) σx(mm) σy(mm) σz(mm) σα(deg) σβ(deg) σγ(deg) 
0.1 0.0019 0.0019 0.0022 0.0014 0.0014 0.0009 
0.2 0.0038 0.0038 0.0043 0.0029 0.0029 0.0018 
0.4 0.0077 0.0077 0.0086 0.0057 0.0057 0.0036 
0.6 0.0115 0.0115 0.0229 0.0086 0.0086 0.0053 
0.8 0.0153 0.0153 0.0172 0.0114 0.0114 0.0071 
1.0 0.0191 0.0191 0.0215 0.0143 0.0143 0.0089 



Table 2. The influence of 2-D subpixel accuracy on the 
6DOF 

 
CV(deg) σx(mm) σy(mm) σz(mm) σα(deg) σβ(deg) σγ(deg) 

20 0.0079 0.0079 0.0321 0.0116 0.0116 0.0031 
40 0.0075 0.0075 0.0174 0.0092 0.0092 0.0032 
60 0.0074 0.0074 0.0121 0.0074 0.0074 0.0033 
80 0.0075 0.0075 0.0094 0.0062 0.0062 0.0035 

100 0.0078 0.0078 0.0080 0.0054 0.0054 0.0037 
120 0.0082 0.0082 0.0071 0.0048 0.0048 0.0039 
140 0.0086 0.0086 0.0065 0.0045 0.0045 0.0041 
160 0.0089 0.0089 0.0063 0.0043 0.0043 0.0043 
180 0.0090 0.0090 0.0062 0.0043 0.0043 0.0044 

Table 3. The influences of the network convergent angles on 
the 6DOF 

 
depth(mm) σx(mm) σy(mm) σz(mm) σα(deg) σβ(deg) σγ(deg)

0 0.0072 0.0072 0.0088 0.0062 0.0062 0.0036 
20 0.0073 0.0073 0.0087 0.0061 0.0061 0.0036 
40 0.0075 0.0075 0.0087 0.0059 0.0059 0.0036 
60 0.0078 0.0078 0.0086 0.0056 0.0056 0.0035 
80 0.0082 0.0082 0.0085 0.0052 0.0052 0.0035 
100 0.0085 0.0085 0.0084 0.0048 0.0048 0.0035 

Table 4. The influence of the depth of the object on the 
6DOF 

 
The 2-D subpixel accuracy σ0 acts as a linear factor influencing 
the accuracy of the 6DOF. This is clearly shown in Table (). 

The increase of the network convergent angle improves the 
accuracy of the positional parameter zt and the rotational 
parameters α and β significantly but decreases the accuracy of 
the rotational parameter γ. The best convergent angle for the 
accuracy of the positional parameters xt and yt is about 60 
degrees. However as far as the RMS standard deviations of the 
three positional parameters and the three rotational parameters 
is concern, the best convergent angle for the positional 
parameters is at 110 degrees and the best convergent angle for 
the rotational parameters is around 160 degrees. Therefore a 
convergent angle between 110 and 160 degrees will give the 
best estimation of the six DOF provided that the 2-D subpixel 
accuracy σ0 remains the same. An object with depth can 
improve the accuracy of the three rotational angles but will not 
help the positional parameters. 
 
6. Conclusions 
 
The method described here allows an easy analysis for the 
capabilities of the measurement system with the covariance of 
the estimates.  
 
Further work 
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