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ABSTRACT

Photogrammetric methods will increasingly be used for real-time applications. A typical requirement is the continuous 3-D
measurement of target locations which arise from three or more cameras at 0.02 ms. per measurement. In this situation user
interaction with algorithms and hardware will be relatively unimportant and a range of new issues will assume greater significance.
For instance, if 100-1000 target locations must be measured, then the computational effort must be minimised and if possible
completely predictable. Furthermore, the external parameters of the cameras must be checked and, if necessary, adjusted at the
same time as the 3-D co-ordinates are measured, while the internal parameters may be adjusted more slowly. Hence, under these
conditions, the characteristics of the currently available algorithms and the way in which they are applied must be studied.

This paper describes a methodology for solving collinearity equations based on iterative least squares estimation. Unlike the
traditional  bundle adjustment which solves for the unknown co-ordinates of object targets and camera parameters simultaneously,
a solution for least squares estimation is developed which separates the parameters into two different groups, one for camera
parameters, and the other for the co-ordinates of object points. Each group of parameters is adjusted individually with the other
group fixed. While conventionally this process may be carried out just once for a variety of purposes, by repeating this process both
sets of parameters are gradually refined. Because the same functional model is used in the two steps and the process is still a
conventional least squares optimisation, the final result is the same as that obtained using the usual bundle adjustment but with a
considerable time and storage saving. The full covariance matrix is not available, but it will not always be necessary in real-time
systems and it can always be computed if required.

1. INTRODUCTION

In close range photogrammetry multiple CCD cameras are used
to capture images of the targeted object from different
viewpoints. Based on the geometric perspective principle, a set
of so called collinearity equations can be derived to establish
the relationships between 2-D observations on the camera
image planes and 3-D co-ordinates of object targets. By solving
the collinearity equations the 3-D co-ordinates of these targets
can be estimated. Three major steps are normally needed for
this procedure: (i) 2-D image data acquisition and target
location; (ii) target matching between different cameras; and
(iii) least squares estimation of the unknown parameters of the
functional model. Using powerful processors or hardware real-
time target location can be realised. Various approaches to
target matching are possible such as using epipolar lines and
epipolar planes (2-D and 3-D matching). However, solving
collinearity equations is still a considerable time consuming
procedure. It is not appropriate within the confines of this
paper to give a full review of the historical development of
least squares optimisation methods so some references and
highlights are given which are pertinent to the contents of this
paper. The principles of simultaneous least squares adjustment
are well known (Mikhail, 1981; Cooper, 1987). It is clear that
this method provides the de facto standard for the output from
an adjustment. However, the requirement for large matrix
inversions places large demands on storage and computing
power. To avoid this a sequential adjustment may be used as a
means of providing fast updates for a few parameters while not
requiring a full matrix inversion (Shortis, 1980; Gruen, 1985).
For most true real-time applications the direct linear transform
(DLT) has been used but it does not provide the highest
accuracy due to its modelling deficiencies and the reliance on

accurately measured control points for camera parameter
estimation (Marzan, 1975; Karara, 1980). For situations where
interior and exterior camera parameters are known a direct
spatial intersection may be used (Granshaw, 1980; Shmutter,
1974). Because each of these methods have deficiencies
research is necessary to find an alternative fast, robust and
flexible solution.

This paper discusses a two step separated least squares
adjustment. It can be shown that this method gives the same
results as the simultaneous bundle adjustment but with a
significant decrease in storage requirements and computational
time. While this method may not be new, to the authors
knowledge this is the first time the method has been discussed
in the context of real-time 3-D measurement. For example:
Shmutter & Perlmuter (1974) discussed the use of iterations of
the process of resection followed by intersection to save
computer storage space. In this case the functional model was
not the same in the two steps hence the results could not be the
same as for a simultaneous bundle adjustment; Miles (1963)
discussed the solution of normal equations by an iterative
process where submatrices representing part of the unknown
parameters were solved separately. This was done to save
computing storage requirements; and Hill et al (1995)
described a two stage iterative solution for image interpretation
based on a point distribution model.

2. THEORETICAL BACKGROUND FOR ITERATIVE
LEAST SQUARES ESTIMATION

Least squares estimation is an efficient method dealing with
redundant measurement containing random errors of normal
distribution. It has being widely used in control surveying and
photogrammetry to evaluate unknown parameters when the



measured elements are more in number than the minimum
needed for a unique solution. In this section the normal least
squares method is briefly reviewed and an iterative separated
least squares method is introduced by a simple example.

2.1 Simultaneous least squares estimation

The following example illustrates the use of least squares
estimation for plane positioning of point P by measured
distances to base stations. Fig. 2.1 illustrates the measurement
network.
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Fig. 2.1 Plane positioning by measured distances to base
stations

Eq. 2.1 defines the relationship between the measured
elements l = [ l1 , l2 , … , lm ] and the unknown parameters x
and y.

f x x y y ln n n n= − + − − =(( ) ( ) )2 2
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where x and y, the co-ordinates of the plane point P, are two
unknown parameters to be estimated, xn and yn are co-
ordinates of base stations whose value are known and ln are
measured distances from the point P to the base stations. A
minimum of two base stations will give a unique solution for x
and y. For accurate positioning, more base stations may be
used. The least squares method is chosen to estimate the best
solution. Linearizing Eq. 2.1 by Taylor series expansion to the
first order accuracy gives
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Expressing Eq. 2.2 in matrix form gives the linearized
observation equation

A b v∆ = +                2.3

where A is the Jacobian matrix of size m×2, ∆∆ is a vector of
corrections of the unknown parameters, b is a vector
corresponding to the left hand side of Eq. 2.2 and v is a vector
of residuals of the measured elements. Associated with the
vector of measured elements l is a covariance matrix ΣΣll which
gives the stochastic model of the observations. The cofactor
matrix Qll = σ0

-2Σll is used to derive the cofactor matrix of the
unknown parameters Q∆∆. Least squares methods usually
estimate all the unknown parameters simultaneously. This
leads to the well known formula of least squares solution

∆ = −( )A WA A Wbt t1                           2.4

where W=Qll
-1, is the weight matrix of measured elements. The

cofactor matrix the unknown parameters is given by

Q A WAt
∆∆ = −( ) 1                                          2.5

which gives the accuracy evaluation of unknown parameters
obtained from Eq. 2.4. By inversion of  the matrix (AtWA) and
some simple matrix calculation, all the unknown parameters
can be solved simultaneously. This traditional least squares
method has been proved to be very efficient in many
applications and well justified (Cooper, 1987). A problem may
arise when large numbers of parameters need to be estimated
by the traditional least squares method in some real
applications since inverting large matrices is expensive in
terms of speed and memory requirements. In this case the
following method may be more suitable.

2.2 Iterative separated least squares estimation

This least squares method estimates unknown parameters one
by one. When estimating one selected parameter, all other
parameters are considered constant. Another parameter is then
selected and the process repeated. After all parameters have
been estimated further iterations of the complete process are
used until the solution converges satisfactorily. In this
example, only two parameters are to be estimated. When
estimating the unknown parameter x, the other parameter y is
considered to be constant. When estimating y, x is considered
constant. To fulfil this operation Eq. 2.3 is rearranged as

A x A y b v1 2∆ ∆+ = +                         2.6
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are column vectors of the Jacobian matrix A. To estimate the
unknown parameter x,  y is considered constant. So A2 = 0. In
this case, Eq. 2.6 becomes

A x b v1∆ = +                       2.7

By the criteria of least squares estimation

∆x A WA A Wbt t= −( )1 1
1

1                                          2.8

Obviously, the dimension of the matrix ( A1
tWA1 ) is 1×1,

therefore
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Similarly,
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In this way, the unknown parameters x and y can be solved
separately and iteratively, and inversion of the matrix (AtWA)
is avoided. The accuracy of estimated parameters x and y are
given approximately by



Q A WAx
t= −( )1 1

1                          2.11
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Table 2.1 gives a comparison of the results between the
simultaneous least squares method and the iterative separated
least squares method for this plane positioning example with
various numbers ( m = 10, 100, 1000 ) of base stations
surrounding the point P(x,y) whose position is to be estimated.
Distances li ( i = 1, 2, ... , m ) from point P to each base station
are measured. The a priori standard deviation of each

measured distance is given by σ σi o il=
_

, in which σo is the

reference variance which is taken to be 0.1 m. for lo = 100 m.
In this simulation test, ( x y, ) = ( 600.0, 500.0 ) is the true

position of the point P. (590, 510) is selected as the starting
point for both methods. The last two rows of Table 2.1 shows
the standard errors of x and y calculated from Eq. 2.11, Eq.
2.12 and Eq. 2.5.

No. BS 10 100 1000
Iterations x y x y x y

       0 590.00000 510.00000 590.00000 510.00000 590.00000 510.00000
       1 599.91478 499.99835 599.85208 500.02114 600.01219 499.99928
       2 600.03396 499.99296 600.02077 500.01939 600.00379 499.99861
       3 600.03412 499.99295 600.02079     ----- 600.00378     -----

     SLS 600.03412 499.99295 600.02079 500.01939 600.00378 499.99861

ISLS RMS   0.08056   0.06587   0.03087   0.02528   0.00957   0.00790
SLS RMS   0.08545   0.06986   0.03103   0.02541   0.00958   0.00791

Table 2.1 Comparison between Simultaneous Least Squares
(SLS) and Iterative Separated Least Squares estimation (ISLS)

It can be seen from Table 1 that the iterative least squares
method gives exactly the same results as the simultaneous least
squares method after two or three iterations for this example
and the approximately estimated standard errors of x and y
from Eq. 2.11 and Eq. 2.12 are comparable with that calculated
from Eq. 2.5. Although this method is demonstrated for a
specific simple example, the results hold for other more
complex situations that require least squares estimation. The
computational expenses of the two methods are not compared
in this example since only two unknown parameters are
involved. If many unknown parameters, say hundreds or even
thousands, are to be estimated and the observation equations
have the special structure that is typical in photogrammetry,
the iterative separated least squares method will give a
significant advantage in terms of speed and memory
requirements. Furthermore, although the unknown parameters
may be estimated one by one, they may also be estimated in
groups.

3. THE APPLICATION OF SEPARATED LEAST
SQUARES ESTIMATION IN PHOTOGRAMMETRY

3.1 Bundle adjustment

The bundle adjustment is a well known and powerful
analytical method for the determination of 3-D co-ordinates
where optimum results and statistical information are required.
The procedure of bundle solution is briefly reviewed here. If Nc

cameras are used to measure Np object points and the jth object
point (Xj, Yj, Zj) is imaged on the ith camera as a image point
(xij, yij), 2NcNp equations can be constructed by the collinearity
conditions.  The well known collinearity equations are
expressed as
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( i = 1, 2, ... , Nc       j = 1, 2, ... , Np )

where Xj, Yj, Zj are the 3-D co-ordinates of the jth object point ,
xij, yij are the 2-D co-ordinates of its image on the ith camera,
XLi, YLi, ZLi are the perspective centre position of the ith
camera, and mimn are the rotation coefficients derived from ωi,
ϕi, κi of the ith camera. (3Np+6Nc) unknown parameters have
to be solved. Usually the number of equations 2NcNp (2NcNp+7
when datum deficiencies are considered) is much larger than
the number of unknown parameters (3Np+6Nc). So these
unknown parameters can be estimated by the least squares
method and the 3-D co-ordinates of each object point can then
be obtained. The traditional bundle adjustment estimates all
unknown parameters simultaneously. This means the
dimensions of the coefficient  matrix (AtWA) of the linearized
observation equations will be (3Np+6Nc)×(3Np+6Nc). When
the number of object points and/or the number of cameras is
very large, the computational and storage expense of inverting
the matrix (AtWA) will be considerable. Even if partitioning of
the coefficient matrix (AtWA) is considered (Granshaw, 1980),
inverting a matrix of 3Np×3Np or 6Nc×6Nc is still time
consuming. Table 3.1 illustrates the computational expense of
a typical Bundle Adjustment operated on SUN SPARC Classic
workstation.

 Number of targets 50 100 150 200 250    300    350    400
 Computational  time (s) 11 66 214 521 997  1690  3488  3967

Table 3.1   Computational expense of Bundle Adjustment
(Number of Cameras Nc = 5)

3.2 Two step separated adjustment

When the iterative least squares method is used to deal with
the collinearity equations in photogrammetry, all unknown
parameters can be estimated one by one from the 3-D co-
ordinates of each object point to the parameters of each
camera. In this case, all the object points are independent when
the camera parameters are considered constant and all cameras
are independent when the object points are fixed. This can
clearly be seen from the structure of the Jacobian matrix A
(Fig. 3.1a) since there is no rank deficiency of the linearized
observation equations. It is convenient to divide all unknown
parameters into two groups, one for the 3-D co-ordinates of
object points and the other for the camera parameters, i.e., x =
(xop ,xcp)t, where the subscripts op and cp refer to 3-D co-
ordinates of object points and camera parameters respectively.
This technique may be termed a two step separated adjustment
in photogrammetry. The two grouped unknown parameters xop

and xcp are expressed as xop = (X1, Y1, Z1, X2, Y2, Z2,...., XNp,
YNp, ZNp)t  xcp = (XL1, YL1, ZL1, ω1, ϕ1, κ1, XL2, YL2, ZL2, ω2, ϕ2,
κ2,...., XLNc, YLNc, ZLNc, ωNc, ϕNc, κNc)t. In this case, the Jacobian
matrix A is separated into two parts Aop and Acp, the linearized
observation equations will be expressed as
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where Aop and Acp are submatrices of Jacobian matrix  A which
refer to the partial differentials of the functional model with
respect to xop and xcp respectively. Fig. 3.1a illustrates the
structure of the Jacobian matrix A with the size of
2NcNp×(3Np+6Nc), the left hand section is Aop and right hand
section is Acp. Each small block in Aop indicates a 2×3
submatrix and the big block in Acp indicates a 2Np×6
submatrix. (Np is the number of  object points and Nc is the
number of cameras).

...

Aop Acp

 Fig. 3.1     (a)                           (b)                      (c)
(a) The structure of the Jacobian matrix A of the linearized
collinearity equations. (b) The structure of the coefficient
matrix Aop

tWAop. (c) The structure of the coefficient matrix
Acp

tWAcp

The basic principle of this two step separated adjustment
method is to estimate the unknown parameters xop and xcp

separately and iteratively. When estimating 3-D co-ordinates of
object points xop, camera parameters xcp are considered
constant. When estimating camera parameters xcp, 3-D co-
ordinates of object points xop are considered constant. This two
step separated procedure is discussed in detail as follows.

3.2.1 Adjust 3-D co-ordinates of object points with cameras
fixed

If the camera parameters xcp are supposed to be constant, all
elements of matrix Acp will be zero. Eq.  3.3 is simplified to

A x b vop op op op∆ = +                                             3.3

in which bop and vop are column vectors corresponding to the
right hand sides of Eq. 3.3 respectively. By the criteria of  least
squares estimation, the corrections of object points ∆xop is
given by

∆x A WA A Wbop op
t

op op
t

op= −( ) 1                              3.4

where the coefficient matrix (Aop
tWAop) is a block diagonal

matrix with the size of 3Np×3Np whose structure is shown in
Fig. (3.1b). Each small block on the diagonal is a 3×3
submatrix. In this case, the covariance matrix (Aop

tWAop)-1 of
the 3-D co-ordinates of object points will have the same
structure as the coefficient matrix (Aop

tWAop) and is calculated
simply by inverting Np 3×3 matrices instead of inverting a
3Np×3Np matrix. Since all the object points are independent
their corrections can be estimated one by one. The 3-D co-
ordinates of all the object points determined from the previous
iteration are used as the starting values in this iteration since
the collinearity equations are non-linear. After this iteration,
these 3-D co-ordinates of object points are updated and refined.
They are then used to adjust the camera parameters in the next
procedure.

3.2.2 Adjust camera parameters with object points fixed

In this case, the 3-D co-ordinates of object points xop are
considered constant. So all elements in matrix Aop are zero. Eq.
3.3 becomes

A x b vcp cp cp cp∆ = +                                       3.5

in which bcp and vcp are column vectors corresponding to the
right hand sides of Eq. 3.3 respectively. By the criteria of  least
squares estimation, the correction of object points ∆xcp is given
by

∆x A WA A Wbcp cp
t

cp cp
t

cp= −( ) 1                            3.6

where the coefficient matrix (Acp
tWAcp) is also a block

diagonal matrix with the size of  6Nc×6Nc whose structure is
shown in Fig. 3.1c. Each small block on the diagonal  is a 6×6
submatrix. In this case, the covariance matrix (Acp

tWAcp)-1 of
the camera parameters will have the same structure as the
coefficient matrix (Acp

tWAcp) and it is calculated simply by
inverting Nc 6×6 matrices instead of inverting a 6Nc×6Nc

matrix. Since all the cameras are independent their corrections
can also be estimated one by one. The parameters of all the
cameras determined by a previous iteration are used as the
starting values in this iteration. After this iteration, these
camera parameters are updated and refined.

3.3 Discussion.

In practise the two step process continues until the required
stopping criteria is met. Simulation tests and practical tests
show that this two step separated adjustment can always give
the same solution as the traditional simultaneous bundle
adjustment after a few tens of iterations even for a very weak
network and poor starting values. The test results are given in
the next section.

It has been assumed here that the focal length is a constant and
all systematic errors introduced by lens distortion or any other
sources have been calibrated beforehand, and the measured
image co-ordinates x and y are corrected accordingly. If these
systematic errors have not been calibrated or are not well
calibrated, additional parameters can be included in the
collinearity equations as for a self calibrating bundle
adjustment. In this case, more unknown parameters ( e.g. 14 or
more ) will be involved in the procedure of  camera parameter
adjustment. Instead of 6×6, the size of each small block on the
diagonal of the coefficient matrix (Acp

tWAcp) could be 14×14,
but the structure of remains the same, it is still a block
diagonal matrix. Alternatively, a third step may be used to
adjust the interior camera parameters only with object points
and exterior camera parameters fixed. It is well known that the
Jacobian matrix A and the coefficient matrix (AtWA) of
linearized observation equations in photogrammetry are very
sparse and very special in structure. There are 3Np+6Nc

elements on each row of the Jacobian matrix A and only 9 of
them are non-zero. So the sparseness of A is given by
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Fig. 3.2 The sparseness of the Jacobian matrix A

Fig. 3.2 illustrates the sparseness of A. When the number of
object points is 100, less than 3% of elements in Jacobian
matrix A  are non-zero. In this case, inverting the full size
matrix of (AtWA) or two partitioned matrices which is common
in the bundle adjustment is not efficient if the full covariance
matrix is not necessary. The full covariance matrix may be
valuable in some situations to evaluate the whole system, but
in many situations (e.g. real-time) the diagonal elements of
covariance matrix could be adequate to evaluate the accuracy
of estimated 3-D co-ordinates of the object points.

The two step separated adjustment makes full use of the
special properties of the Jacobian matrix A and the principle of
iterative least squares estimation. An accuracy evaluation of
the estimated 3-D co-ordinates of object points and camera
parameters are given approximately by

Q A WAxop op
t

op= −( ) 1                                         3.8

Q A WAxcp cp
t

cp= −( ) 1                                         3.9

In some industrial applications, for example real-time
monitoring of moving objects, the camera parameters are
relatively stable while the 3-D co-ordinates of object points
may move frequently. In this case, the object points can be
located with good estimates for camera parameters which can
also be monitored and if necessary adjusted. In addition real-
time 3-D co-ordinate measurement for hundreds of targets can
be achieved using inexpensive computers. Care must be taken
when the two step separated adjustment is applied in
photogrammetry in order to get the same results as the
traditional bundle adjustment. The linearized observation
equations should be the same for both steps. The objective of
the minimisation is the sum of squares of the residuals on the
image plane as is usual in the bundle adjustment but is often
not the case in many intersection algorithms for example
Shmutter & Perlmuter (1974).

4. SIMULATION TESTS

A simulation network was constructed to test the two step
separated adjustment method in photogrammetry and compare
it with the traditional bundle adjustment. Fig. 4.1 illustrates
the configuration of the simulation test network. The object
points were randomly distributed in a 400×400×200 mm. box
with eight control points on the edges which were used to
initialise the camera parameters. The focal length of the
cameras was 25 mm. The cameras were uniformly located on a
circle with a distance of 2500 mm. to the centre of the box. The
2-D projections of the targets on the image planes were then
computed. Approximate camera parameters were calculated
using control points with deliberately added errors.
Approximate 3-D co-ordinates of the object points were

computed using the approximate camera parameter. Both the
approximate camera parameters and the 3-D co-ordinates of
the object points were then used as the starting values. The
results of using the simultaneous adjustment and the separated
adjustment were compared.

X

y

Z

αα

Fig. 4.1 The simulation test network

Table 4.1 shows some simulation test results of the bundle
adjustment and the two step separated adjustment for a four
camera network. The minimisation of the sum of squares of the
residuals (vtWv) on the image plane is the objective of the
least squares process. The values of vtWv calculated from both
methods were always same (the small differences in the eighth
decimal place is caused by the round off of input data), and all
residuals on the image planes were the same for the two
methods. A further check was made by comparing the
difference between 3-D co-ordinates of the object points
obtained from both methods after a 3-D transformation. The
results indicated no differences to the level of precision used. It
can be seen from Table 4.1 that the two step separated
adjustment is much faster than the bundle adjustment
especially when the number of targets is very large, since this
method shows a linear computational expense with the number
of targets. To measure 1000 targets for this four camera
network, the two step separate adjustment needs only 103
seconds. It should be noted that the two step method iterates
more times  than the bundle adjustment but for real-time
applications only one iteration may be required.

                      GAP                      TSSA
targets Time(seconds)      vtWv(mm2) Time(seconds)      vtWv(mm2)

50            11      0.00026146            5      0.00026144
100            66      0.00053658           11      0.00053662
150          214      0.00082628           17      0.00082622
200          521      0.00105640           22      0.00105626
250          997      0.00126715           27      0.00126712
300        1690      0.00148518           32      0.00148520
350        3488      0.00177046           34      0.00177045
400        3967      0.00206680           41      0.00206678
1000          103      0.00506967

Table 4.1 Number of cameras = 4. (TSSA refers to the two step
separated adjustment. GAP, the General Adjustment Program
developed at the City University, is a simultaneous least
squares estimation program used in survey and/or
photogrammetric network adjustment - a typical Bundle
Adjustment)

The accuracy of the 3-D co-ordinates of the object points
estimated by the two methods are the same since their results
are same. In the two step separated adjustment method, the full
covariance matrix is not calculated, the accuracy of the 3-D co-
ordinates of the object points estimated can only be evaluated
approximately by Eq. 3.8. Table 4.2 shows these approximate
values and the values calculated from the full covariance
matrix with a six camera network. It can be seen that the
results are similar especially when the number of targets
increases. So the approximately evaluated standard errors
appear to be acceptable.



Number of              σσx (mm)              σσy (mm)              σσz (mm)
     targets      GAP     TSSA      GAP     TSSA      GAP     TSSA
        50   0.04653   0.04677    0.04644    0.04678    0.05614    0.05738
      100   0.04678   0.04689    0.04677    0.04689    0.05696    0.05763
      150   0.04685   0.04693    0.04685    0.04693    0.05724    0.05770
      200   0.04680   0.04685    0.04680    0.04686    0.05716    0.05752

Table 4.2   Number of cameras = 6, σo = 0.001 (mm),  α = 90º

It is well known that increasing the number of photographs at
each camera station will increase the accuracy of 3-D co-
ordinates of the object points measured in photogrammetry.
Table 4.3 illustrates the results of the simulation test with six
camera stations and 200 targets. When the number of
photographs increase, the standard errors for x, y and z
decrease and they are inversely proportional to the square root
of the number of photographs as reported by Fraser (1992).

Number of
photographs

       σσx (mm)         σσy (mm)          σσz (mm)

        1         0.04686         0.04686          0.05752
        2         0.03313         0.03313          0.04067
        4         0.02343         0.02343          0.02876
        6         0.01913         0.01913          0.02348
        8         0.01657         0.01657          0.02034
        k      0.04686k-1/2      0.04686k-1/2       0.05752k-1/2

Table 4.3  Number of targets = 200  σ0 = 0.001 (mm)  α = 90º

Changing the network geometry gives different accuracy for
estimated 3-D co-ordinates. Table 4.4 and Fig. 4.2 illustrates
the influence of network geometry on the accuracy of 3-D co-
ordinates by changing the convergent angle αα. A large angle
will cause the accuracy to worsen in x and y, and get better in
z. It can be seen approximately 110º will give the best accuracy
for x, y and z (RMS values) and that angles between 100º and
120º are reasonable. The q-value is equal to 0.5 in this
situation as reported by Fraser (1984).

     αα(º)    σσx (mm)   σσy (mm)    σσz (mm)  σσzyz(mm)
       60    0.04351    0.04351    0.08145    0.05893
       80    0.04558    0.04559    0.06330    0.05217
      100 0.04826    0.04827    0.05307    0.04992
      108    0.04943    0.04944    0.05023    0.04970
      110    0.04973    0.04974    0.04960    0.04969
      112    0.05004    0.05005    0.04901    0.04970
      120    0.05127    0.05128    0.04690    0.04986
      140    0.05420    0.05421    0.04317    0.05080
      160    0.05642    0.05643    0.04117    0.05184

 Table 4.4 Number of targets = 200  Number of cameras = 6
σo = 0.001 (mm)
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   Fig. 4.2  3-D co-ordinate accuracy of different
                       network geometry

5. CONCLUSIONS

In this paper an iterative separated least squares estimation
method is introduced and compared with the simultaneous
least squares estimation method using a simple example. This
method has been applied to the solution of collinearity
equations as a two step separated adjustment method.

Simulation tests showed that this method gave the same result
as the traditional bundle adjustment. The advantages of this
method are: (i) it is much faster than the traditional bundle
adjustment. The bundle adjustment shows an exponential
increase with the number of target, while this iterative method
is linear; (ii) less memory is required than the traditional
bundle adjustment. With the bundle adjustment, the inversion
of the large matrix requires considerable memory space as the
number of unknowns increases. With the iterative method, the
sizes of the matrices to be inverted are 3x3 and 6x6 no matter
how many cameras and targets involved; (iii) it is reliable and
robust. Simulation tests show that the convergent property of
the separated solution is as good as that of the bundle
adjustment; and (iv) it is more flexible than the direct linear
transform method, as camera orientations are continually
updated and a full functional model of all camera parameters
can be included. Further work is undeway to implement this
method in a real-time system and to consider other aspects
such as: datum problems; further mathematical analysis; and
real-time specific issues.
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